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Abstract. A topological soliton of a new type which may exist in bistable energetically non- 
degenerate systems (SENDSS) is revealed. Such a soliton realizes the uansition from the initial 
equilibrium state to the intermediate dynamic state. the latter relaxing to the final equilibrium 
state in the post-frontal region. Results of computer simulations lead to the conclusion that 
all the characteristics o f  the process just beyond the front are well described by the analyiical 
solution for an infinite lattice. On the basis of analytical and numeical studies the cooperative 
mechanism of Structural tnnsitions in EWDSS is proposed. 

1. Introduction 

The ordered systems (molecular and polymer crystals, and macromolecules), which have at 
least two stable equilibrium states with different energies (absolutely stable and metastable 
states) can exhibit under certain conditions structural transitions or chemical reactions. 
Such objects will be referred to below as bistable energetically non-degenerate systems 
(BENDSS). The conventional approach to the description of the dynamic mechanism of 
structural transitions and chemical reactions in BENDSS deals with local elementary eve@, 
each consisting in overcoming an energy barrier. However, there are experimental and 
computer simulation data which point to abnormal (from the common viewpoint) behaviour 
of a number of BENDSS [I]. 

The main goal of this article is to show that the structural transitions in BENDSS may 
be realized at an atomic level not only by localized processes but also in a cooperative 
manner through the motion of localized non-linear excitations. It is necessary to note 
that this alternative mechanism of molecular mobility in BENDSS cannot be considered in 
terms of the usual topological solitons. The reason is that the latter correspond to the 
transition between two equilibrium states of the same energy and therefore they may appear 
in a particular class of bistable energetically degenerate systems (BEDSS) only [2,3]. Our 
approach to structural transitions in BENDSS is based on revealing topological solitons of a 
new type, which realize at an atomic level a transition from the initial equilibrium state to 
an intermediate dynamic state. This relaxes then to the final state, but the front propagation 
is described adequately by the soliton motion. In contrast with topological solitons in BEDSS 
with a continual velocity spectrum, topological solitons in BENDSS have the only possible 
value of velocity. 

Despite the fact that the existence of the usual topological solitons in B E N D S  is 
forbidden, nevertheless the computer simulation data relating to the particular cases of 
detonation in models of crystalline explosives [4-6] and of proton transfer in complex 
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lattices in the presence of an  external field [7] indicate the propagation of a stationary wave 
with a soliton-like structure of the front regiont. 

Explanations of such an unexpected behaviour proposed to date imply the presence of 
dissipative effects [4] or (in the Hamiltonian case, when dissipation is absent) of energy 
outflow from leading degrees of freedom through a radiation mechanism [5,6]. In both 
cases, however, we do not deal with elementary solitonic excitations. Existing numerical 
data do not allow one to make unambiguous conclusions about the nature of solitonic 
excitations in BENDSS. Therefore, there is a need in the analytical treatment of the problem 
with the help of simplified models, for further computer simulation on the basis of both 
simple and complicated models as well as experimental study. In this connection the 
following fundamental questions arise. 

(i) Does an elementary excitation exist whose motion corresponds to reaction 
propagation in Hamiltonian BENDSS at the atomic level? 

(ii) What are the conditions of its existence, stability and initiation? 
(iii) What is the relationship between the microscopic and macroscopic levels in the 

different processes where such excitations are manifested? 
A basis for answering these questions was given in our previous article [SI where the 

simplest model of an infinite diatomic molecular crystal with two equilibrium states, whose 
energies are different, has been constructed. The main result of [SI is analytical, revealing 
in Hamiltonian BENDSS a topological soliton of a new type which realizes at the atomic 
level a transition from an initial metastable state to a certain intermediate dynamic state. 

L I Manevich and V V Smirnov 

2. The analytically solved model 

Let us consider the model of a diatomic molecular crystal suggested in [SI (figure 1). Such 
a model, as mentioned above, may be an adequate approximation for the problems of 
structural (in particular conformational) transitions or topochemical reactions in solids. The 
Hamiltonian function of th is  system may be written in the form 

a 
2 2 

H = (;U: + -wj m . 2  + U(Wj - U j )  + -(uj+l - Wj)2 

J 
K k 

2 + ~ ( U j + l  - U j Y  + 4 W j + l  - W j )  

where M and m are the masses of ‘large’ and ‘small’ particles, u j  and wj are their 
displacements from the equilibrium position in crystal lattice, and a, K and k are the 
rigidities of intermolecular bonds. The intramolecular potential has two energetically 
unequal minima (figure 2). Intermolecular interactions are harmonic. The points over the 
symbols denote the time derivatives. One possible realization of the intramolecular potential 
U which is convenient to describe the structural transition is represented in appendix 1. 

It is more convenient to write the corresponding equations of motion in terms of 
intramolecular coordinates pj = wj - u j  and displacements xj = (Muj + mwj) / (M + m )  
of the centre of molecular masses: 
i j -  V$(xj+i -2Xj+xj-])+N~j+1 - ~ j - 1 ) / 2 M t - B ( v j + 1  - 2 ~ j  + ~ j - l ) / M t  = O  

U ( X ~ + I  - xj-01‘2~ (2)  ‘ ~ j  + 0 ‘ ~ j  + vvi (Vj+l - 2 ~ j  + ~ j - 1 )  + U’(pj)/fi - .’ 2 2 

- B(Xji1 - 2xj + Xj-IVP = 0 

t In the case of detonation the absolutely stable energy minimum may be considered as shifted to infinity 
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Figure 1. Simple quasi-onedimensional model for a diatomic molecular crystal. The large 
atoms (of mass M) and small atoms (m) atoms are coupled by both intermolecular bonds (single 
lines) with rigidities a, K and k and intnmolecularbands (double lines) described by a non-linear 
potential U such as in figure 2. 

Figure 2. Double-well intramolecular potential U;  
the higher sate at 'p = 0 corresponds to the reagents 
and the lower state to the products of reaction. 

where the constants VO, V I ,  a. ,5 and w are defined by the intermolecular rigidities a, K 
and k (see appendix 1). U'(rp) = dUjdip, Mt = M + m, /A = Mm/mt and v = 51. 

In the continual approximation, which is justified if the front width is at least several 
lattice constants, the dynamics of molecular crystals is described by a coupled system of 
two partial equations: 

Here the subscripts denote the partial derivatives with respect to the time ( r )  or space 
(x) coordinatest. 

t It is easy to show that equations (3) written in such a form corresponds to the first term of respective Hamiltonian 
decomposition of the general diatomic system with arbitrary intentonic interactions. 



258 L I Manevich and V V Smirnov 

Introduction of the kinematic variable < = x - V s  (V is the velocity of the travelling 
wave) allows us to solve asymptotically the first of equations (3) with respect to a 'lattice 
deformation' x I :  

Excluding the lattice deformation xc  from the second of equations (3), one may reduce the 
system (3) to the equation of the 'non-linear oscillator': 

P(V)Y,, + a'(% V )  = 0 (5) 
where the effective potential @(q V) includes the wave velocity V as a parameter: 

The factor p(V) is given by 

This equation is valid when looking for a stationary elementary excitation which propagates 
with velocity V in the infinite lattice. A specific form of solution is defined both by the 
profile of the potential function @ and by the sign of the factor p(V). This statement 
becomes evident on looking at the phase portrait in equation (3, most specific cases of 
which are shown in figure 3 for different wave velocities V ,  while the relative depth of 
potential wells is changed with the sign of p(V).  If the latter is positive, we have only 
periodic solutions, located near the bottom of the right- or left-hand well (figure 3(a)). On 
the other hand, if the condition p(V) < 0 holds, the solution describing the transition 
from one well to the vicinity of the other is possible, as shown in figures 3(b) and 3(c). 
Figure 3(c) partly relates to the stationary wave describing a transition from one to other 
stationary point, which corresponds to initial (p = 0) and certain asymptotic (p = m) states. 

Let us analyse the conditions when such a solution is possible. The presence of a 
velocity-dependent term in the effective potential @ means that the relative depths of the 
left- and right-hand wells are changed with variation in V. Most specific profiles of potential 
function are shown in figure 4. It is fundamental that a certain velocity vk exists such that 
the potential minima have equal values (figure 4(c)). If q k  denotes the reactional coordinate 
at f + -a, one can write the following equation: 

@(e vk) @(Vk; vk). (8) 

It is necessary to note that the coordinate yk is not equal to the coordinate of the absolute 
minimum potential energy of the original system, despite the fact that the relative distance 
may be small (appendix 2). 

The second equation defining the condition of localized solution existence follows from 
the requirement of stationarity of the asymptotic state?: 

(d/dp)@P(m; Vk) = 0. (9) 

t For a potential function of the general type. equation (8) may be added to the equation defining the stationarity 
of the initial point too: 

(d/dW((oin; Vd = 0. 

However, this mquirement is trivial for the potential U represented in figure 2, 
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Figure 3. The phase pomait of an effective non-linear oscillator: (a) if the velocity of the 
travelling wave is not in the region where p ( V )  is negative, then the solution of equation ( 5 )  
is a periodic function: (b)~if the supersonic velocity of the wave is not equal to the velocity of 
the topological soliton. the closed separatrix is associated with a non-topological soliton with 
homogeneous boundary conditions; (c) at the velocity of the travelling wave which is equal 
to the velocity of~the topological soliton, the separattix corresponds to the topological soliton 
solution, which describes the conversion of reagents to intermediate products of reaction. 

9 
Figure 4. The effective potential O(p; V )  for different velocities of the travelling wave 
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PfV) 

The solutions of equations (8) and (9) allow us to define the topological kink velocity 
vk and the reaction coordinate 'pk in the intermediate state. The corresponding lattice 
deformation xt is defined by equation (4). 

By analysing the factor p in equation (7) we can see that it may have a positive or 
negative dependence on the wave velocity V .  One of the specific dependences of p on V is 
represented in figure 5. In this case, p is negative both in the subsonic and in the supersonic 
region. If Vk is the solution of equations (8) and (9) and p ( v k )  is negative, the solutions 
of equation (5) are defined by the trajectories shown in figure 3(c). The solution which 
satisfies the homogeneous boundary conditions at < + +m (i.e. 'p = 0, x I  = 0) is pmly 
represented by the separatrix travelling through points 'p = 0, 'p6 = 0 and 'p = 'p~,  'pr = 0. 
When this is the case, the non-linear localized wave, namely the topological soliton, will 
be the solution of equation (3): 

v, = pk[l  - tanh(t/6)1/2 

" {a [ 1 - tanh (:)I - fsech' (i) 
Xr = -2M,(V2 - V;) 

where 6 is the half-width of the frontal region. 
What are the main peculiarities of the solution obtained, which causes it to differ from 

the topological soliton in a BEDS? 
The principal difference is that the soliton solution (10) describes the transition from 

an initial state to a certain intermediate state which does not correspond to any equilibrium 
state of the system studied. Really, the asymptotic values of the reaction coordinate 'p and 
lattice deformation xt at < + -co (it relates to the region well behind the front of the 
chemical reaction (CR) or the structural transition (ST)) are 
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These values are not the same as the values defined by equilibrium equations of the 
homogeneous state (see appendix I ) .  Moreover this intermediate state is not static because 
the constant velocities of molecules well behind the front are not zero: 

Therefore the displacement x on the left-hand edge of the lattice increases while the 
reaction front moves to the right-hand edge. It is a natural consequence of the change in 
the lattice constant. 

So the asymptotics (11) of a topological soliton in a BENDS differs qualitatively from 
the analogous soliton in a BEDS. where it corresponds to the equilibrium point of the system. 
However, as shown in appendix 2, the intermediate state (11) is localized in the vicinity 
of the global minimum potential energy of the system under consideration (final state). 
Therefore, in a real system (such as a crysial with free edges), one can expect some relaxation 
process which transfers the lattice from the intermediate state to the final state. This is the 
second peculiarity of a topological soliton in a BENDS. (It is necessary to note that such a 
relaxation cannot be described in term of a stationary wave, and the solution of this problem 
exceeds the limits of the analytical model.) 

The last peculiarity of the topological soliton in a BENDS is that its velocity is unique 
and is defined by equation (8) and (9), while the topological soliton in a BBDS has a wide 
spectrum of velocities from V = 0 up to the speed of sound. 

It is useful to note that solution (10) possesses translational invariance in the case of an 
infinite lattice. It corresponds to unactivated motion of the interface between the lattice in 
different states (in other words, the reaction front) from the physical point of view. 

In the next section we shall consider the results of numerical simulations of the 
topological soliton motion in a simple model of a molecular crystal. 

3. Numerical study 

Numerical investigations of the system under consideration have been made for one- 
dimensional lattices with various parameters of interatomic interactions (a, K, k. M ,  m and 
U as denoted in figure 1). First it is necessary to note that such lattices can exhibit a strong 
different dynamical behaviour depending on the parameters mentioned above. A full study 
will be published in the near future [9] and here we discuss the~computer simulation results 
which are interesting from a chemical reaction and/or a structural transition viewpoint. 

To answer the questions relating to the existence and stability of a topological soliton the 
initial profile and velocity of the topological soliton have been chosen in accordance with 
the analytical solution for an infinite continuum model (figure 6). The first test was made for 
kink propagation in an 'infinite crystal', i.e. in a lattice with boundary conditions which are in 
accordance with the analytical solution (10) during the full time of the numerical experiment. 
The most characteristic caSe of soliton propagation modelling is shown in figure 6, where one 
can see both the reaction coordinate (figure 6(a)) and the lattice deformation (figure 6(b)) 
profiles. We observed that the soliton had a finite lifetime under these conditions. The 
specific path of the soliton is changed from a few .lattice constants to a few tens of lattice 
constants depending on the parameters of the interatomic interactions. It is very interesting 
that nmower solitons have a larger lifetime. One can see that the profile of the soliton 
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Figure 6. The evolution of coupled topological solitons in the 'infinite' chain: (a) reaction 
coordinare 9"; (b) lattice deformation xn+i - x,,, n is the number of molecules and r is lhe lime 
in relative units. For example, the system panmeten in this simulation are (see appendix 1) 
n = 1.510, K = 0.150, k = 17.000. m = 1.00, M = 2.60, C/o = 2.933. A ' =  -5.100 and 
K = 3.750; the initial kink velocity is equal to Vk = 1.589l$ for these chain pmmeten. 

and its velocity are not distinguished noticeably from the analytical solution (10) during its 
lifetime excluding a short time before the soliton stops. 

To study the effect of boundary conditions (and the size of the system) on the soliton 
propagation a lattice with the same parameters and free edges has been used (figure 7).  The 
initial conditions were the same as in the 'infinite' lattice, i.e. they were in accordance with 
the analytical solution (IO) at time t =-0. As the process progresses further, one can observe 
that a complex structure of the post-frontal region is formed (figures 7 and 8). Propagation 
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Pigwe 7. The same I figure 6 but for a chain with free edges 

of the front corresponds reasonably well to the analytical predictions for an infinite lattice. 
A small radiation just beyond the front may be related to the effect of discreteness. On the 
other hand, as expected the relaxation to the final state (with additional vibrations) occurs 
in the region well beyond the wave front. Let us emphasize that such a relaxation process 
does not affect noticeably the main characteristics of the frontal region. 

So by observing the fine structure of the reaction kink during its progress one can 
distinguish three very different regions (figure 8). The first is the region of sharp 
transformation from the initial to intermediate state. Its length is equal to several lattice 
constants. The profiles of the reaction coordinate and accompanying lattice deformation 
inside this region differ weakly from the analytical solution (IO) excluding the last period 
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0 50 1 OD 
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Figure 8. Fine smctum of me reaction kink in the case of (a) 'infinite' and (b) finite chains: 
- , reaction coordinate; - - -, lmtice deformation. 

of the kink lifetime. 
The second region consists of molecules in the intermediate state, and the numerical 

solution is close to the analytical solution at the initial stage of kink movement. It is only 
the small radiation that disturbs this quasi-stationary region during the process. 

Finally, the third region is associated with relaxation to the final state. Starting from 
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the edge of the chain this region then propagates into the second (intermediate-state) region 
and catches the front up after it stops. As the energy of the intermediate state is higher than 
the energy of the final state, relaxed molecules are vibrationally excited. 

As far as the lifetime of the reaction kink is concerned, it may be divided into three 
stages. The first starts at the moment of kink initiation and is characterized by a small 
retardation of the reaction front. The region consisting of relaxed molecules if formed 
during this period also. The second stage is characterized by appreciable retardation of 
the reaction front and essential energy redistribution between the frontal and ‘intermediate’ 
regions. This process is accompanied by a considerable decrease in height of the soliton 
connected with the reaction coordinate velocity qr. Finally, the last stage of the kink life 
starts at the moment that the front stops and completes the sharp phase boundary formation 
(figures 6 and 7). During this time, one can observe the initial extension of the width of 
the front and its subsequent contraction. 

Figure 9. The same IU figure 6 at a non-zero initial temperature (about 0.02 of the barrier 
enerpy). 
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Special calculations have shown convincingly the small effect of the finite temperature 
(in a wide region) on the frontal region and the velocity of its propagation (figure 9). 
All these results show that the kink motion with a finite lifetime in BENDSS is indeed an 
elementary event of a new type in the process of structural transition or chemical reaction. 
Its spatial promotion spans a large part of the lattice in contrast with the local elementary 
event. The activation energy for such a cooperative elementary event corresponds to the 
natural kink energy. So we have really a very efficient solitonic elementary mechanism 
of the structural transition at the atomic level. Let us recall that this may coexist with 
homogeneous progress at the macroscopic level. 

Very significant problems relating to the initiation conditions of topological solitons 
of a new type and comparison of two very distinct elementary mechanisms of structural 
transition (cooperative and local) will be the subject of further detailed investigations. 

4. Conclusion 

Analysis of analytical and computer simulation data allows one to conclude that, under 
certain conditions, a new cooperative elementary mechanism of structural transitions and 
chemical reactions exists which is different significantly from the local overcoming of the 
energy barrier. This mechanism is connected with unactivated motion of a topological 
soliton of new type. The latter realizes the cooperative transition from an initial equilibrium 
state to an intermediate dynamic state. Then in a finite lattice such a state relaxes to the final 
state well beyond the front region but the most significant features of the elementary event 
are determined by soliton motion. Small initiation energies and large lifetimes of solitons 
may lead under certain conditions to the formation of a macroscopic front. If the initiation 
energy is not sufficiently small, the propagation of the structural transition is homogeneous 
at a macroscopic level. In any case the presence of solitons can accelerate the transition 
significantly. Besides structural transitions in the bistable molecular crystal the solitonic 
mechanism may be significant in such processes as detonation in solids (here the absolutely 
stable energy minimum is shifted to infinity), conformational transitions in macromolecules 
(DNA), proton transfer in complex lattices with hydrogen bonds in the presence of external 
fields, and the fracture of polymer chains. 
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Appendix 1. 

By assuming that the lattice constant is equal to unity and measuring the reaction coordinate 
and lattice deformation in lattice constants, one can obtain the relations between the 
interatomic force rigidities and the parameters of the dynamic equations: 

M t = M + m  p.=Mm/M,  

V$ = (a + K + k ) / M ,  

(Al.1) 

(A1.2) 
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(A1.3) 

f f = a  (A1.4) 

a M - m  M m B=- -  +k- - K -  
2 Mr Mr Mt 

(A1.5) 

y = 0r/6 (A1.6) 

(AI .7) 

(A1.8) 

The factor v introduced in equation (A1.3) may be +I or -1 corresponding to negative 

To obtain the analytically solved model, one can use the following form of the potential 
or positive inclinations of the optical branch of the dispersion law [9] .  

function U@): 

(A1.9) 

To investigate the static homogeneous state of system under consideration let us write 
the potential energy in the form 

where E = xj+l - xi = constant is the homogeneous lattice deformation and $9 = (pj = 
constant is the corresponding reaction coordinate. A relationship between the coordinates E 

and $9 can be obtained from the first of the equilibrium equations: 

an/aE = M[(V;E - 0l9) = 0. (Al.11) 

The stationary values of the reaction coordinate are the solutions of the second equation 
of equilibrium which-is written in the following form: 

(A1.12) 

For the specific form of the potential U ( p )  that we deal with, one can obtain the 
equilibrium position in a clear form. The magnitude of the reaction coordinate in the initial 
state is 

$3" =o. 

The reaction coordinate in the final state is 

(Al.  13) 

$ 9 h = - - ( l + f i )  h 
3K 

(A1.14) 
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The reaction coordinate at the top of barrier, corresponding to the unstable equilibrium 
position is 

L I Manevich and V V Smirmv 

A 
%;U = - 5;; (1 - f i) 

Here 

(A1.15) 

(Al.  16) 

and ug = U0 / M t .  

initial state must be stable: 
We can evaluate the expression under the square root from the requirement that the 

(A1.17) 

So we can see that -A/2K < 9fi. < - A / K  and 0 < fix < 4 . 1 2 ~ .  For the exothermic 
processes the initial potential energy is larger than the final energy: n(0, 0) > I l ( & f i . ,  &. 
From this requirement and the inequality (A1.17) we obtain 

(A1.18) 

(Al. 19) 

- W / ~ K  < q~,,  < --h/3K 

0 < 9 h  < -A/%. 

Appendix 2. 

Further one can find a value of the 'intermediate' reaction coordinate q?k as a solution of 
equations (8) and (9) for the potential U ( q )  mentioned above (see appendix 1): 

9 k  = -2h/3K. 
Thus the relationships between the equilibrium and 'intermediate' reaction coordinates 

follow from equations (A1.18) and (Al.19): 

9kI%;~ > 2. (A2.2) 

The corresponding relation for the lattice deformation is 

' ' '  ' (A2.3) 

For the various values of potential parameters, one can obtain the asymptotic lattice 

2 Uo(1 - 2h2/9K) + 0' - 3 - >  X;) uo(1 - ?.A2/%) + U2 

3 CIZ Etin (22 

deformation, which may differ significantly from the equilibrium value. 
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