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Abstract. A topological soliton of a new type which may exist in bistable energetically non-
degenerate systems (BENDSS) is revealed. Such a soliton realizes the transition from the initial
equilibrium state to the intermediate dynamic state, the latter relaxing to the final equilibrium
state in the post-frontal region. Results of computer simulations lead to the conclusion that
all the characteristics of the process just beyond the front are wefl described by the analytical
solution for an infinite lattice. On the basis of analytical and numerical studies the cooperative
mechanism of structural transitions in BENDSS is proposed.

1. Introduction

The ordered systems (molecular and polymer crystals, and macromolecules), which have at
least two stable equilibrium states with different energies (absolutely stable and metastable
states) can exhibit under certain conditions structural transitions or chemical reactions.
Such objects will be referred to below as bistable energetically non-degenerate systems
(BENDSs). The conventional approach to the description of the dynamic mechanism of
structural transitions and chemical reactions in BENDSs deals with local elementary evengs,
each consisting in overcoming an energy barrier. However, there are experimental and
computer simulation data which point to abnormal (from the common viewpoint) behaviour
of a number of BENDSS [1].

The main goal of this article is to show that the structural transitions in BENDSs may
be realized at an atomic level not only by localized processes but also in a cooperative
manner through the motion of localized non-linear excitations. It is necessary to note
that this alternative mechanism of molecular mobility in BENDSs cannot be considered in
terms of the usuval topological solitons. The reason is that the latter correspond to the
transition between two equilibrium states of the same energy and therefore they may appear
in a particular class of bistable energetically degenerate systems (BEDSs) only [2,3]). Our
approach to structural transitions in BENDSs is based on revealing topological solitons of a
new type, which realize at an atomic level a transition from the initial equilibriom state to
an intermediate dynamic state. This relaxes then to the final state, but the front propagation
is described adequately by the soliton motion. In contrast with topological solitons in BEDSs
with a continual velocity spectrum, topological solitons in BENDSs have the only possible
value of velocity.

Despite the fact that the existence of the uswal topological solitons in BENDSs is
forbidden, nevertheless the computer simulation data relating to the particular cases of
detonation in models of crystalline explosives [4-6] and of proton transfer in complex
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Jattices in the presence of an external field [7] indicate the propagation of a stationary wave
with a soliton-like structure of the front regiont.

Explanations of such an unexpected behaviour proposed to date imply the presence of
dissipative effects [4] or (in the Hamiltonian case, when dissipation is absent) of energy
ouiflow from leading degrees of freedom through a radiation mechanism [5,6]. In both
cases, however, we do not deal with elementary solitonic excitations. Existing numerical
data do not allow one to make unambignous conclusions about the nature of solitonic
excitations in BENDSs. Therefore, there is a need in the analytical treatment of the problem
with the help of simplified models, for further computer simulation on the basis of both
simple and complicated models as well as experimental study. In this connection the
following fundamental questions arise.

(i) Does an eclementary excitation exist whose motion corresponds to reaction
propagation in Hamiltonian BENDSs at the atomic level?

(i) What are the conditions of its existence, stability and initiation?

(iii) What is the relationship between the microscopic and macroscopic levels in the
different processes where such excitations are manifested?

A basis for answering these questions was given in our previous article [8] where the
simplest model of an infinite diatomic molecular crystal with two equilibrium states, whose
energies are different, has been constructed. The main result of [8] is analytical, revealing
in Hamiltonian BENDSs a topological soliton of a new type which realizes at the atomic
level a transition from an initial metastable state to a certain intermediate dynamic state.

2. The analytically solved model

Let us consider the model of a diatomic molecular crystal suggested in [8] (figure 1). Such
a model, as mentioned above, may be an adequate approximation for the problems of
structural (in particular conformational) transitions or topochemical reactions in solids. The
Hamiltonian fupction of this system may be written in the form

a
H= Z( u + w +U(w, uj)+§(uj+[ —IUJ)Z

K k
+ ?(uj+l - u;)? + E(wj+l - wj)z) (1)

where M and m are the masses of ‘large’ and ‘small’ particles, u; and w; are their
displacements from the equilibrium position in crystal lattice, and a, K and & are the
rigidities of intermolecular bonds. The intramolecular potential has two energetically
unequal minima (figure 2). Intermolecular interactions are harmonic. The points over the
symbols denote the time derivatives. One possible realization of the intramolecular potential
U which is convenient to describe the structural transition is represented in appendix 1.

It is more convenient to write the corresponding equations of motion in terms of
intramolecular coordinates ¢; = w; — u; and displacements x; = (Mu; + mw;)/(M +m)
of the centre of molecuiar masses:

K= VEGU+1 — 25 + Xj=1) + (@1 — 95-1)/2M; — B(@j11 — 205 + @j=1) /M, =0
3 + @ + vV 9y — 205 + @i1) + U (@) 1t — (X — Xy—1) /20t (2)
= B+ — 23+ x-1)/ne =0

1 In the case of detonation the absolutely stable energy minimum may be considered as shifted to infinity,
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M M

Figure 1. Simple quasi-one-dimensional model for a diatomic molecular crystal. The large
atoms (of mass M) and small atoms (#») atoms are coupled by both intermolecnlar bonds (single
lines) with rigidities &, K and & and intramolecular bands (double lmes) described by a non-linear
potential U such as in figure 2.

U{g)

N ¢

Figure 2. Double-well intramolecular potential I/;
the higher sate at ¢ = 0 corresponds to the reagents

and the lower state to the praducts of reaction.

where the constants Vg, Vi, @. § and @ are defined by the intermolecular rigidities a, K
and k (see appendix 1), U'{¢) = dU/dep, My =M +m, p = Mm/m, and v = £1.

In the continual approximation, which is justified if the front width is at least several
lattice constants, the dynamics of molecular crystals is described by a coupled system of
two partial equations:

o B
KXer — V02XJ:X — N Xxxex + H?’x - E‘Pxx + A_};:‘Pxxx =0 -
u o
Py + UV1 Pyx +w @+ — (‘;0) - =X EXxx - Zx.txx =0.
“ M ~ (24

Here the subscripts denote the partial derivatives with respect to the time () or space
{(x) coordinatest.

1 It is easy to show that equations (3) written in such a Form comesponds to the first terms of respective Hamiltonian
decomposition of the general diatomic system with arbitrary interatomic interactions.
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Introduction of the kinematic variable { = x — V¢ (V is the velocity of the travelling
wave) allows us to solve asymptotically the first of equations (3) with respect to a ‘lattice
deformation” x,:

IR S o
X =T —vy TR\ T e

Excluding the lattice deformation . from the second of equations (3), one may reduce the
system (3} to the equation of the ‘non-linear oscillator’:

PV + @' (g, V) =0 ()

where the effective potential ®(g; V) includes the wave velocity V as a parameter:

vy [ o2 o ¢ Ul
Ple V)= ["’ v - V&)] 2 T ©
The factor p(V) is given by
2 _ 2 _ y2
(V) = Vi UVE _ B* —aly +h/(V* = V)] 7

Mys(V? = Vg)

This equation is valid when locking for a stationary elementary excitation which propagates
with velocity V in the infinite lattice. A specific form of solution is defined both by the
profile of the potential function ¢ and by the sign of the factor p(V). This statement
becomes evident on looking at the phase portrait in equation (5), most specific cases of
which are shown in figure 3 for different wave velocities V, while the relative depth of
potential wells is changed with the sign of p(V). If the latter is positive, we have only
periodic solutions, located near the bottom of the right- or left-hand well (figure 3(a)). On
the other hand, if the condition p(V) < 0 holds, the solution describing the transition
from one well to the vicinity of the other is possible, as shown in figures 3(b) and 3(c).
Figure 3(c) partly relates to the stationary wave describing a transition from one to other
stationary point, which corresponds to initial (¢ = 0) and certain asymptotic {¢ = @) states.

Let us analyse the conditions when such a solution is possible. The presence of a
velocity-dependent term in the effective potential ¢ means that the relative depths of the
left- and right-hand wells are changed with variation in V. Most specific profiles of potential
function are shown in figure 4. It is fundamental that a certain velocity Vi exists such that
the potential minima have equal vatues (figure 4(c)). If g, denotes the reactional coordinate
at £ — —oo, one can write the following equation:

@(0; Vi) = Olp; Vi) (8)

It is necessary to note that the coordinate ¢y, is not equal to the coordinate of the absolute
minimum potential energy of the criginal system, despite the fact that the relative distance
may be small (appendix 2).

The second equation defining the condition of Jocalized solution existence follows from
the requirement of stationarity of the asymptotic state}:

{d/de)Pler; Vi) =0. 9)

t For 2 potential function of the general type, equation (3) may be added to the equation defining the stationarity
of the initial point too:

{d/de)® (pin; Vi) = 0.

However, this requirement is trivial for the potential U represented in figure 2,
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Figure 3. The phase portrait of an effective non-linear oscillator: (a) if the velocity of the
travelling wave is not in the region where p(V} is negative, then the solution of eguation (5)
is a periodic function; (b) if the supersonic velocity of the wave is not equal to the velocity of
the topological soliton, the closed separatrix is associated with a non-topological soliton with
homogeneous boundary conditions; (c) at the velocity of the travelling wave which is equal
to the velocity of the topological soliton, the separatrix corresponds to the topological soliton
solution, which describes the conversion of reagents to intermediate products of reaction.

(e) -

Figure 4. The effective potential $(g; V) for different velocities of the travelling wave.
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V)

Figure 5. The factor p versus the wave velocity V.

The solutions of equations (8) and (9) allow us to define the topological kink velocity
Vi and the reaction coordinate gy in the intermediate state. The corresponding lattice
deformation x, is defined by equation (4).

By analysing the factor p in equation (7) we can see that it may have a positive or
negative dependence on the wave velocity V. One of the specific dependences of p on V is
represented in figure 5. In this case, p is negative both in the subsonic and in the supersanic
region. If V; is the solution of equations (8) and (9) and p(V}) is negative, the solutions
of equation (5) are defined by the trajectories shown in figure 3(c). The solution which
satisfies the homogeneous boundary conditions at { — +oo (i.e. ¢ =0, x; = 0) is partly
represented by the separatrix travelling through points ¢ =0, ¢, = 0 and ¢ = ¢, ¢y = 0.
When this is the case, the non-linear localized wave, namely the topological soliton, will
be the solution of equation (3):

@ = ¢k[1 — tanh(Z/8)]/2

—__ ¥ — E _ E. 2 E
X = oMV — V) [a [1 tanh (5)} 5 5oeh (5) (10)
_ ( Lok ) sech?(z /8) tanh(z /5)
T UVE— VD) 257

where § is the half-width of the frontal region.

What are the main peculiarities of the solution obtained, which causes it to differ from
the topological soliton in a2 BEDS?

The principal difference is that the soliton solution (10) describes the transition from
an initial state to a certain intermediate state which does not correspond to any equilibrium
state of the system studied. Really, the asymptotic values of the reaction coordinate ¢ and
lattice deformation x; at { — —oco (it relates to the region well behind the front of the
chemical reaction (CR} or the structural transition (ST)) are

¢ =%
oy L —» —oo. (11)

x(k) - ¥k
d M(VE =V
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These values are not the same as the values defined by equilibrium equations of the
homogeneous state (see appendix 1}. Moreover this intermediate state is not static because
the constant velocities of molecules well behind the front are not zero:

© =y —— P 2y, 12
Xz kMt(sz —_ Voz) ?é | (12)

Therefore the displacement ¥ on the left-hand edge of the lattice increases while the
reaction front moves to the right-hand edge. It is a natural consequence of the change in
the lattice constant.

So the asymptotics (11} of a topological soliton in a BENDS differs qualitatively from
the analogous soliton in a BEDS, where it corresponds to the equilibrium point of the systern.
However, as shown In appendix 2, the intermediate state (11) is localized in the vicinity
of the global minimum potential energy of the system under consideration (final state}.
Therefore, in a real system (such as a crystal with free edges), one can expect some relaxation
process which transfers the lattice from the intermediate state to the final state. This is the
second peculiarity of a topological soliton in a BENDS. (It is necessary to note that such a
relaxation cannot be described in term of a stationary wave, and the sclution of this problem
exceeds the limits of the analytical model.)

The last peculiarity of the topological soliton in a BENDS is that its velocity is unique
and is defined by equation (8) and (9), while the topological soliton in a BEDS has a wide
spectrum of velocities from V = 0 up to the speed of sound.

It is useful to note that solution (10} possesses translational invariance in the case of an
infinite lattice. It corresponds to unactivated motion of the interface between the lattice in
different states (in other words, the reaction front) from the physical point of view.

In the next section we shall consider the results of numerical simulations of the
topological soliton motion in a simple model of a molecular crystal.

3. Numerical study

Numerical investigations of the systemn under consideration have been made for one-
dimensional lattices with various parameters of interatomic interactions (a, K, k. M, m and
U as denoted in figure 1). First it is necessary to note that such lattices can exhibit a strong
different dynamical behaviour depending on the parameters mentioned above. A full study
will be published in the near future [9] and here we discuss the-computer simulation results
which are interesting from a chemical reaction andfor a structural transition viewpoint.

To answer the questions relating to the existence and stability of a topological soliton the
initial profile and velocity of the topological soliton have been chosen in accordance with
the analytical solution for an infinite continuum model (figure 6), The first test was made for
kink propagation in an “infinite crystal’, i.e. in a lattice with boundary conditions which are in
accordance with the analytical solution (10) during the full time of the numerical experiment.
The most characteristic case of soliton propagation modelling is shown in figure 6, where one
can see both the reaction coordinate (figure 6(a)} and the lattice deformation (figure 6(b))
profiles. We observed that the soliton had a finite lifetime under these conditions. The
specific path of the soliton is changed from a few Jattice constants to a few tens of lattice
constants depending on the parameters of the interatomic interactions. It is very interesting
that narrower solitons have a larger lifetime. One can see that the profile of the soliton
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Figure 6. The evolution of coupled topological solitons in the ‘infinite’ chain: (a) reaction
coordinate ¢,; (b) lattice deformation Xx4+1 — X, »# is the number of molecules and 7 is the time
in relative units. For example, the system parameters in this simulation are (see appendix 1)
a = 1510, K = 0.150, £ = 17.000, m = 1.00, M = 2.60, Uy = 2.933, 2 = —5.100 and
& = 3.750; the initial kink velocity is equal to Vi = 1.589V; for these chain parameters.

and its velocity are not distinguished noticeably from the analytical soluticn (10) during its
lifetime excluding a short time before the soliton stops.

To study the effect of boundary conditions (and the size of the system} on the soliton
propagation a lattice with the same parameters and free edges has been used (figure 7). The
initial conditions were the same as in the ‘infinite’ lattice, i.e. they were in accordance with
the analytical solution (10) at time ¢ =-0. As the process progresses further, one can observe
that a complex structure of the post-frontal region is formed (figures 7 and 8). Propagation
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reaction coordinals

0.45

lattice deformation

Figure 7. The same as figure 6 but for a chain with free edges.

of the front cortesponds reasonably well to the analytical predictions for an infinite lattice.
A small radiation just beyond the front may be related to the effect of discreteness. On the
other hand, as expected the relaxation to the final state (with additional vibrations) occurs
in the region well beyond the wave front. Let us emphasize that such a relaxation process
does not affect noticeably the main characteristics of the frontal region.

So by observing the fine structure of the reaction kink during its progress one can
distinguish three very different regions (figure 8). The first is the region of sharp
transformation from the initial to intermediate state. Its length is equal to several lattice
constants. The profiles of the reaction coordinate and accompanying lattice deformation
inside this region differ weakly from the analytical solution (10) excluding the last period
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Figure 8. Fine structure of the reaction kink in the case of (a) “infinite’ and {b) finite chains:
——, reaction coordinate; — — —, lattice deformation.

of the kink lifetime.
The second region consists of molecules in the intermediate state, and the numerical

solution is close to the analytical solution at the injtial stage of kink movement. It is only

the small radiation that disturbs this quasi-staticnary region during the process.
Finally, the third region is associated with relaxation to the final state. Starting from
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the edge of the chain this region then propagates into the second (intermediate-state) region
and catches the front up after it stops. As the energy of the intermediate state is higher than
the energy of the final state, relaxed molecules are vibrationally excited,

As far as the lifetime of the reaction kink is concerned, it may be divided into three
stages. The first starts at the moment of kink initiation and is characterized by a small
retardation of the reaction front. The region consisting of relaxed molecules if formed
during this period also. The second stage is characterized by appreciable retardation of
the reaction front and essential energy redistribution between the fronta! and ‘intermediate’
regions. This process is accompanied by a considerable decrease in height of the soliton
connected with the reaction coordinate velocity ¢;. Finally, the last stage of the kink life
starts at the moment that the front stops and completes the sharp phase boundary formation
(figures 6 and 7). During this time, one can observe the initial extension of the width of
the front and its subsequent contraction.

(2)

reaction coordinote

latlice deformation

Figure 9. The same as figure 6 at a non-zero initial temperature (about 0.02 of the barrier
energy).
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Special calculations have shown convincingly the small effect of the finite temperature
(in a wide region) on the frontal region and the velocity of its propagation (figure 9).
All these results show that the kink motion with a finite lifetime in BENDSs is indeed an
elementary event of a new type in the process of structural transition or chemical reaction.
Its spatial promotion spans a large part of the lattice in contrast with the local elementary
event. The activation energy for such a cooperative elementary event corresponds to the
natural kink energy. So we have really a very efficient solitonic elementary mechanism
of the structural transition at the atomic level. Let us recall that this may coexist with
homogeneous progress at the macroscopic level.

Very significant problems relating to the initiation conditions of topological solitons
of a new type and comparison of two very distinct elementary mechanisms of structural
transition (cooperative and local) will be the subject of further detailed investigations.

4. Conclusion

Analysis of analytical and computer simulation data allows one to conclude that, under
certain conditions, 2 new cooperative elementary mechanism of structural transitions and
chemical reactions exists which is different significantly from the local overcoming of the
energy barrier. This mechanism is connected with unactivated motion of a topological
soliton of new type. The latter realizes the cooperative transition from an initial equilibrium
state to an intermediate dynamic state. Then in a finite lattice such a state relaxes to the final
state well beyond the front region but the most significant features of the elementary event
are determined by soliton motion. Small initiation energies and large lifetimes of solitons
may lead under certain conditions to the formation of a macroscopic front. If the initiation
energy is not sufficiently small, the propagation of the structural transition is homogeneous
at a macroscopic level. In any case the presence of solitons can accelerate the transition
significantly. Besides structural transitions in the bistable molecular crystal the solitonic
mechanism may be significant in such processes as detonation in solids (here the absolutely
stable energy minimum is shifted to infinity), conformational transitions in macromolecules
(DNA), proton transfer in complex lattices with hydrogen bonds in the presence of external
fields, and the fracture of polymer chains.
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Appendix 1.

By assuming that the lattice constant is equal to unity and measuring the reaction coordinate
and lattice deformation in lattice constants, one can obtain the relations between the

interatomic force rigidities and the parameters of the dynamic equations:

M=M+m w=Mm/M, (AL.1)

Vi=(a+K+k)/M, (A1.2)
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V2 = [a—(K-g— +k%)] /M‘ (A13)

a=a (Al4)
aM—m M m
= - h— - K— )
B R + 7 KM! (AL1.5)
’ ¥y =a/b (A1.6)
wr=a/u (ALT)
h = VZ/12. (ALS)

The factor v introduced in equation (Al.3} may be +1 or —1 corresponding to negative
or positive inclinations of the optical branch of the dispersion law [9].

To obtain the analytically solved model, one can use the following form of the potential
function U{g):
2 3 4

¢ ¢ ¥
Upy=Us| —+Ar~—Fx—]. Al

_ (@) o(2+ 3+fc4) (Al

To investigate the static homogeneous state of system under consideration let us write
the potential energy in the form

2

V. w*
M. p) = M, (7082 —aep+ %7@2) + U ) (AL.10)
t

where £ = x;41 — x; = constant is the homogeneous laitice deformation and ¢ = ¢; =

constant is the corresponding reaction coordinate, A relationship between the coordinates ¢
and ¢ can be obtained from the first of the equilibrium equations:

3T1/8e = M(Vie —ap) = 0. (Al.11)

The stationary values of the reaction coordinate are the solutions of the second equation
of equilibrinm which’ is written in the following form:

8 2
8 _ (if-wz - i"—)ga-:—U(@) =0. (A1.12)
e 5

For the specific form of the potential U(g) that we deal with, one can obtain the
equilibrium position in a clear form. The magnitude of the reaction coordinate in the initial
state is

@ = 0. _ (A1.13)

The reaction coordinate in the final state is

P = -_3% (1 + JE) . (Al.14)
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The reaction coordinate at the top of barrier, corresponding to the unstable equilibrium
position is
e = — (1-vD). (AL.15)
3k
Here
4x(u0 + @?u /M, — o/ V)

p_ve (A1.16)

D=1-

and ug = Up/M,.

We can evaluate the expression under the square root from the requirement that the
initial state must be stable:
A R AL
4 <

g2

So we can see that —A/2x < s, < —A/k and 0 < @ < —A/2x. For the exothermic
processes the initial potential energy is larger than the final energy: IT(0, 0) > Il(gg,, @hn)-
From this requirement and the inequality (A1.17} we obtain

— 20131 < @n < —A /3K (A1.18)
0 < Ppor < —AS3k. (A1.19)

0 < i. (AL1T)

Appendix 2.
Further one can find a value of the ‘intermediate’ reaction coordinate ¢y as a solution of
equations (8) and (9) for the potential U (p) mentioned above (see appendix 1):

o = —20/3k.

Thus the relationships between the equilibrium and ‘intermediate’ reaction coordinates
follow from equations (A1.18) and (A1.19):

$<o/om <1 A2.1)
@i/ Poar > 2. (A2.2)

The corresponding relation for the Jattice deformation is
201 = 22/90) + & _ xP el — 20%/9%) + o
= - s — > .
3 ol E4n ol
For the various values of potential parameters, one can obtain the asymptotic lattice
deformation, which may differ significantly from the equilibrium value,

© o (AZ3)
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